

Novel Safe-Life concept for circuit protection devices

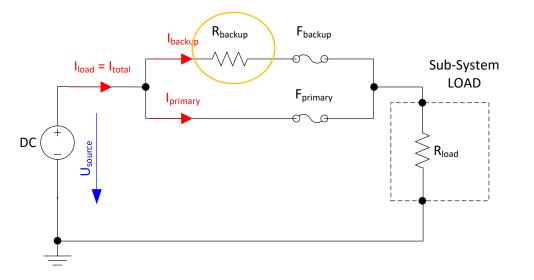
5th Space Passive Component Days (SPCD), International Symposium, 15-18 October 2024, ESA ESTEC

Bruno Zemp, Elmehdi Moradi

Agenda

> Motivation & Goal

> Novel Safe-Life Module – Concept and Function Model


> Results and next steps

Motivation

A degraded or faulty component can lead to an unexpected system failure. \Rightarrow Therefore, redundancy concepts are applied.

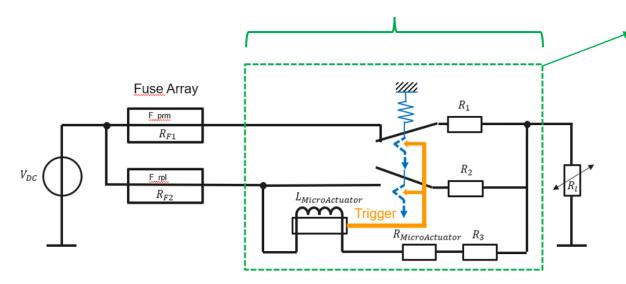
Common warm-redundancy circuit with fuses:

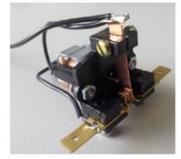
REQ: $P_{\text{max } R \text{ backup}} = I^2 * R = 1.2 \text{ W}$

Not feasible for currents above 3 A (violation of criteria above)

GOAL:

Solution for high current applications (> 3A) with low ohmic-losses

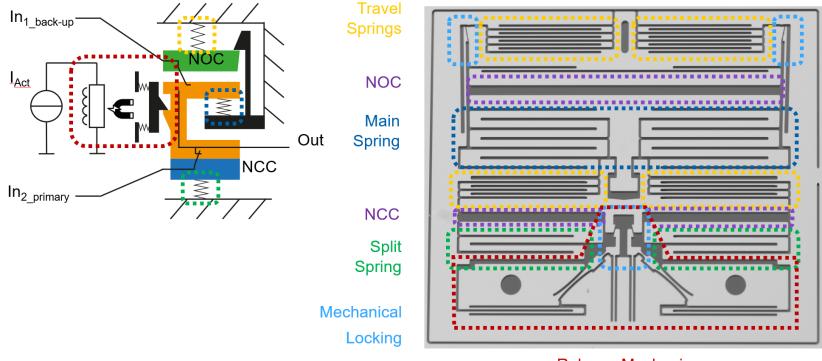

Goal	REQ	Comments
Low ohmic losses	Electric resistance < 5.3mOhm	Resistance similar to HCSF 15 A (max. 5.3mOhm)
	Total Power Dissipation <= 1.2 W	10-times smaller than with series resistor!
Compatibility for rated components up to 15 A	15 A (continuously)	e.g. SCHURTER space fuse range goes up to 15 A
Safe isolation of a fault circuit	Galvanic isolation	
Small Size	<= 1cm ³	



CONCEPT

Safe-Life Module

A three-terminal device



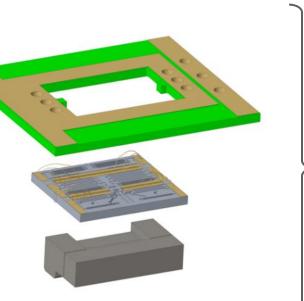
Very first function model

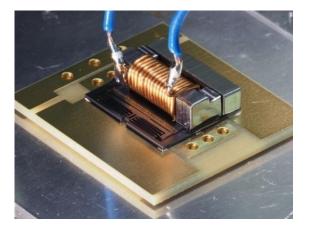
CONCEPT

Safe-Life Module: Si-based irreversible (MEMS) Microswitch

Release Mechanism

Size = $14 \times 14 \times 0.5 \text{ mm}$

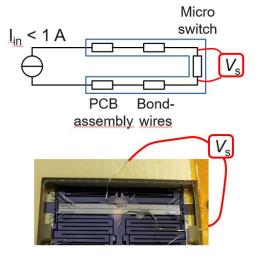


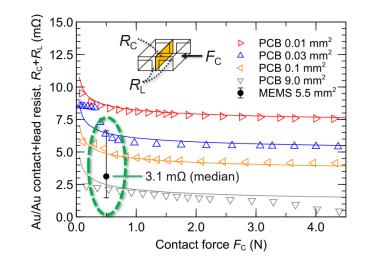

CONCEPT

PCB

Irreversible microswitch system on a Si-chip

Electromagnetic actuator

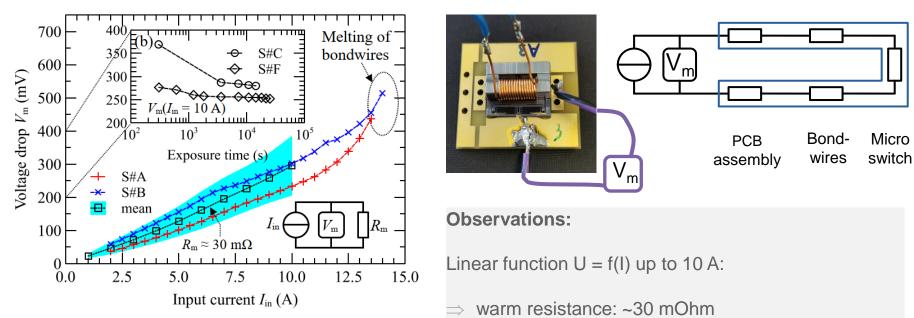




Insights: Results & Findings

Cold Resistance Measurement

Sample size = 8

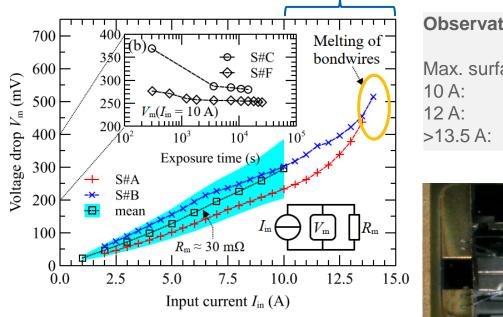

Observation

Contact resistance NCC:

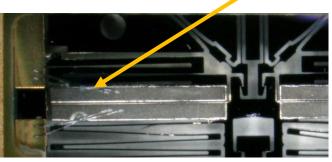
3.1 mOhm (median)

Design limit test -> current step test (voltage drop as function of input current)

Sample size = 5


⇒ Power dissipation: ~3 W (approx. 3-times higher than SCHURTER HCSF 10A)

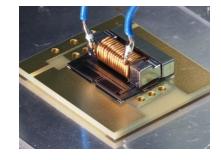
Insights: Results & Findings


Design limit test: Currents above 10 A

Observation

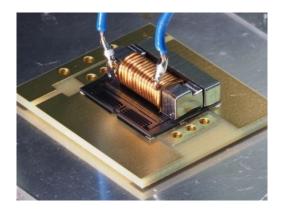
Max. surface temperature:

- 10 A: 65°C
 - > 100°C (at contact area and wire-bonds)
- damage -> wire bond melt-down! >13.5 A:



ELECTRONIC COMPONENT

Summary and next steps


Goal	REQ	Concept – Function Model
Low ohmic losses	Electric resistance < 5.3mOhm	Contact resistance 3.1mOhm Total electric (warm) resistance 30mOhm
	Total Power Dissipation <= 1.2 W	3 W at 10 A
Compatibility for rated components up to 15 A	15 A (continuously)	10 A (continuously)
Safe isolation of a fault circuit	Galvanic isolation	yes
Small Size	<= 1cm ³	yes

First function model demonstrates feasibility.

Next steps

Design improvements and challenges to be approached in a next step:

- 1.) Electrical resistance to be reduced (contact force, tolerances, contact area, surface)
- 2.) Massy electro-magnetic actuator to be replaced
- 3.) Design focus on mechanical robustness/immunity against mechanical shock/vibration (not yet addressed)
- 4.) Desing simplification to reduce manufacturing costs

Thank you for your attention

Elmehdi Moradi Electrical Engineer elmehdi.moradi@schurter.com Bruno Zemp CTO bruno.zemp@schurter.com

